nEUROn

An efficient European cooperation scheme

I - INTRODUCTION
II - AIM OF THE nEUROn PROGRAMME
III - PROGRAMME ORGANISATION
IV - AN EFFICIENT EUROPEAN COOPERATION SCHEME
V - RELATED INDUSTRIAL TEAM
VI - INNOVATIVE INDUSTRIAL SOLUTIONS
VII - PROGRAMME MILESTONES
VIII - DEMONSTRATIONS FLIGHTS
IX - PROGRAMME STATUS
X - CONCLUSION
I - INTRODUCTION

For the coming twenty years, the European combat aircraft industry will face three main challenges:

- the need to develop strategic technologies,
- the necessity to uphold skills of excellences in areas in which the European industry has gained technical competences and fields of excellence,
- the goal to provide workload to the European design offices.

Facing such a situation, the French government took the initiative by launching in 2003 a project for a technological demonstrator of an “Unmanned Combat Air Vehicle” (UCAV), elaborated in the frame of a European cooperation scheme.

The aim of the nEUROn demonstrator is to provide the European design offices with a project allowing them to develop know-how and to maintain their technological capabilities in the coming years.

This project goes far beyond the theoretical studies that have been conducted until now, as it plans the building and the flight demonstration of an unmanned aircraft.

It is also a way to implement an innovative process in terms of management and organisation of a European cooperative programme.

To be fully effective, a single point of decision, the French Defence Procurement Agency (DGA – Délégation Générale pour l’Armement), and a single point of implementation, Dassault Aviation company as prime contractor, were settled to manage the nEUROn programme.

The Italian, Swedish, Spanish, Greek and Swiss governments acting together with their related industrial teams, Alenia, SAAB, EADS-CASA, Hellenic Aerospace Industry (HAI) and RUAG, have joined the French initiative.
II - AIM OF THE PROGRAMME

The aim of the nEUROn programme is to demonstrate the maturity and the effectiveness of technical solutions, but not to perform military missions.

The main technological challenges addressed during the design phase of the nEUROn are:

- the shapes of the air vehicle (aerodynamic, innovative composite structure, and internal weapon bay),
- the technologies related to low observability issues,
- the insertion of this type of aircraft within the test area,
- the high-level algorithms necessary to the development of the automated processes,
- as well as the place of the human factor within the mission loop.

The last, but certainly not the least, important technology to be demonstrated is the capability to carry and deliver weapons from an internal bay. Today, European aircraft are designed with external loading capabilities for bombs and missiles.

The demonstration goals are the followings:

- **the performance of an air-to-ground mission** based on the detection, localization, and reconnaissance of ground targets in autonomous modes,
- **the evaluation of the detection results** of a stealth platform facing ground or aerial threats, in terms of radar cross section and infrared signature,
- **the weapon release from an internal bay**, with the very stringent tempo constraints of a fast decision loop.

It is clear that through these demonstration missions, the goals are to validate technologies around command and control of an unmanned air vehicle of a size similar to a combat aircraft, with all back-up modes insuring necessary safety and security.

The nEUROn system will be network-centric capable.
III - PROGRAMME ORGANISATION

The programme of the nEUROn technological demonstrator is organised as follows:

- a single executive agency, the French DGA which awarded a main contract to the prime contractor and manages the project,

- a single prime contractor, Dassault Aviation company, which is in charge of the main contract implementation.

Ever since the beginning of the programme, the French authorities have clearly stated their will that the UCAV technological demonstrator project should contribute to the build-up of a European defence identity by fully opening it to cooperation. As such, about half of the tasks are entrusted to non-French industrial partners.

In terms of management, this organisation guarantees the best efficiency in a full partnership approach and cooperative relations between the various actors, as well as an improved budgetary control.

IV - AN EFFICIENT EUROPEAN COOPERATION SCHEME

In accordance with the guidelines defined by the French DGA, Dassault Aviation has entrusted about 50% of the work value to European partners, elected after a scrutinized evaluation based on:

- **experience and excellence:**
 The objective of this project is not to create new technological capabilities everywhere in Europe, but to take the full benefit of the already existing technological niches.

- **competitiveness:**
 This project has the ambition to find new ways for costs reduction. Each partner, in addition to their technical excellences, is invited to apply for the most efficient "value for money".

- **state budget allocation:**
 It is a condition imposed by the French DGA that each country having the ambition to participate to the nEUROn programme shall contribute to its financing. For more flexibility, no constraint in term of "geographical return" is assigned to this project, as already dealt with at governmental level.
V - RELATED INDUSTRIAL TEAM

The industrial team of the nEUROn programme is composed of:

- **Dassault Aviation** (France), in addition to being the design authority, takes care of the general design and architecture of the system, the flight control system, the implementation of low observable devices, the final assembly, the systems integration on the “global integration tests rig”, the ground tests, and the flight tests,

- **Alenia** (Italy) contributes to the project with a new concept of internal weapon bay (“Smart Integrated Weapon Bay” - SIWB), an internal EO/IR sensor, the bay doors and their operating mechanisms, the electrical power and distribution system, and the air data system,

- **SAAB** (Sweden), is entrusted with the general design of the main fuselage, the landing gear doors, the avionics and the fuel system,

- **EADS-CASA** (Spain) brings its experience for the wings, the ground station, and the data link integration,

- **Hellenic Aerospace Industry - HAI** (Greece) is responsible for the rear fuselage, the exhaust pipe, and the supply of racks of the “global integration tests rig”,

- **RUAG** (Switzerland) is taking care of the low speed wind tunnel tests, and the weapon interfaces between the aircraft and the armaments.

VI - INNOVATIVE INDUSTRIAL SOLUTIONS

The nEUROn is the first large size stealth platform designed in Europe.

Building on the experience gained from recent projects, for the first time in a military project, the nEUROn is designed and developed within the frame of a completely integrated “Product Lifecycle Management” (PLM) environment, through a “virtual plateau”, allowing Dassault Aviation and its partners, located in the different countries, to simultaneously work together on the same design data base, independently from the location where the design activities are currently performed.

All the teams involved from the very beginning of the programme know them each other very well, thanks to the development tasks jointly performed in the design office implemented inside the Dassault Aviation facilities of St-Could, as well as with the daily use of distant collaborative tools provided with the “virtual plateau”.

Contacts:
Yves Robins, nEUROn communication
Tel: + 33 (0)1 47 11 86 91
Website: www.dassault-aviation.com

Stéphane Fort, corporate communication
Tel: + 33 (0)1 47 11 86 90
Today, the same teams still work together close to the aircraft, or on the “global integration tests rig”.

This specific and innovative organisation allows to achieve a perfect tempo to rapidly solve any technical events occurring during the development phase of the programme.

These advantages, associated to a highly flexible, pro-active and incentive management process, efficiently contribute to focus towards the next major milestone: the first flight of the nEUROn demonstrator.

VII - PROGRAMME MILESTONES

The nEUROn programme was launched in 2003.

The main contract was notified to the prime contractor in 2006, the industrial partnership contracts were signed concurrently.

The first flight of the technological demonstrator is planned for mid-2012, in Istres (France).

VIII - DEMONSTRATIONS FLIGHTS

The scenarios to be validated through the demonstration flights will be as follows:

- insertion in the test range airspace,
- air-to-ground subsonic mission,
- detection, localisation, and autonomous reconnaissance of ground targets without being detected (“to see without being seen”),
- air-to-surface weapon release from an internal bay.
IX - PROGRAMME STATUS

At the beginning of 2012, the status of the nEUROn programme is the following:

a) **The different parts of the airframe** have been manufactured and are delivered to Dassault Aviation in Istres facilities (France):
 - the main fuselage by SAAB,
 - the rear fuselage and the exhaust nozzle by HAI,
 - the wings by EADS-CASA,
 - the bay doors by Alenia,
 - the weapon interface by RUAG,
 - the structural parts contributing to the low observability by Dassault Aviation factories of Argenteuil and Biarritz.

b) **The final assembly** and the final layout of the piping, electrical wiring and equipment installation, including the engine and the landing gear, have been completed in the Dassault Aviation facilities.

c) **The software integration** in the various electronic equipments is in its final stage, using the "global integration tests rig" in Istres.

d) **The first ground tests** have taken place (hydraulics, electrical, fuel, …) soon to be followed by comprehensive engine tests, with a first flight planned in mid-2012.

X - CONCLUSION

The nEUROn programme is a major opportunity for the European industry to:

- develop its capabilities in the UAV field,
- to keep and maintain its competences in order to be ready for the design of the next generation of European combat aircraft,
- to experience a new programme management process, optimized through an innovative international cooperation scheme.